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Abstract. We investigate the use of image-and-spatial transformer net-
works (ISTNs) to tackle domain shift in multi-site medical imaging data.
Commonly, domain adaptation (DA) is performed with little regard for
explainability of the inter-domain transformation and is often conducted
at the feature-level in the latent space. We employ ISTNs for DA at the
image-level which constrains transformations to explainable appearance
and shape changes. As proof-of-concept we demonstrate that ISTNs can
be trained adversarially on a classification problem with simulated 2D
data. For real-data validation, we construct two 3D brain MRI datasets
from the Cam-CAN and UK Biobank studies to investigate domain shift
due to acquisition and population differences. We show that age regres-
sion and sex classification models trained on ISTN output improve gen-
eralization when training on data from one and testing on the other site.

1 Introduction

Domain shift (DS) concerns the problem of mismatch between the statistics
of the training data used for model development and the statistics of the test
data seen after model deployment. DS can cause significant drops in predictive
performance, which has been observed in almost all recent imaging challenges
when final test data was coming from different clinical sites [1]. DS is a major
hurdle for successfully translating predictive models into clinical routine.
Acquisition and population shift are two common forms of DS that appear
in medical image analysis [2]. Acquisition shift is observed due to differences in
imaging protocols, modalities or scanners. Such a shift will be observed even
if the same subjects are scanned. Population shift occurs when cohorts of sub-
jects under investigation exhibit different statistics, e.g., varying demographics
or disease prevalence. It is not uncommon for both types of DS to occur simul-
taneously, in particular in multi-center studies. It is essential to tackle DS in
machine learning to perform reliable analysis of large populations across sites
and to avoid introducing biases into results. Recent work has shown that even
after careful pre-processing, site-specific differences remain in the images [3,4].
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While methods like ComBat [5] aim to harmonize image-derived measurements,
we focus on the images themselves.

One solution is domain adaptation (DA), a transductive [6] transfer learning
technique that aims to modify the source domain’s marginal distribution of the
feature space such that it resembles the target domain. In medical imaging,
labelled data is scarce and typically unavailable for the target domain. It is
also unlikely to have the same subjects in both domains. Thus, we focus on
‘unsupervised’ and ‘unpaired’ DA, wherein labelled data is available only in the
source domain and no matching samples exist between source and target.

Many DA approaches focus on learning domain-invariant feature represen-
tations, by either forcing latent representations of the inputs to follow similar
distributions, or ‘disentangling’ domain-specific features from generic features
[7]. This can be achieved with some divergence measure based on data statistics
or by training adversarial networks to model the divergence between the feature
representations [8]. These methods have been applied to brain lesions [9] and
tumours [10] in MRI, and in contrast to non-contrast CT segmentation [11]

While these approaches seem appealing and have shown some success, they
lack a notion of explainability as it is difficult to know what transformations are
applied to the feature space. Additionally, although the learned task model may
perform equally well on both domains, it is not guaranteed to perform as well
as separate models trained on the individual domains.

We explore model-agnostic DA by working at the image level. Our approach is
based on domain mapping (DM), which aims to learn the pixel-level transforma-
tions between two image domains, and includes techniques such as style transfer.
Pix2Pix [12] (supervised) and CycleGAN [13] (unsupervised) take images from
one domain through some encoder-decoder architecture to produce images in
the new domain. The method in [8] uses CycleGAN to improve segmentation
across scanners and applies DA at both image and feature levels, thus losing
interpretability. It does not decompose the image and spatial transformations.

Methods for DM primarily use UNet-like architectures to learn image-to-
image transformations that are easier to interpret, as one can visually inspect
the output. For medical images of the same anatomy, but from different scan-
ners, we assume that domain shift manifests primarily in appearance changes
(contrast, signal-to-noise, resolution) and anatomical variation (shape changes),
plus further subtle variations caused by image reconstruction or interpolation.

Contributions: We propose the use of image-and-spatial transformer networks
(ISTNs) [14] to tackle domain shift at image-feature level in multi-site imaging
data. ISTNs separate and compose the transformations for adapting appearance
and shape differences between domains. We believe our approach is the first to
use such an approach with retraining of the downstream task model on images
transferred from source to target. We show that ISTNs can be trained adver-
sarially in a task model-agnostic way. The transferred images can be visually
inspected, and thus, our approach adds explainability to domain adaptation—
which is important for validating the plausibility of the learned transformations.



Image-level Harmonization of Multi-Site Data using ISTNs 3

Image-to-Image ISTN - Unidirectional Image-to-Image ISTN - Bidirectional
Reduced
Best  Performance 1,(52T25,5) |
Performance (Domain shift)
¢ ¢ & [ Yo B

Downstream Task —
Trained on S % S2T . s2T2s
e.g. sex clusslﬁer
’ -
s 1_
—
> thszs 5) >
- — >
L(T2T,T) l_' Ly(T2T,T) 1_' —>
Downstream Task ﬁ
Trained on S2T
e.q. sex classifier -
Y

=> Training Improved 1 TZSZT
=> Evaluation Performance

1,(T252T,T)

Fig. 1: (left) The domain shift problem can be mitigated by retraining or finetuning a
task model on images S27T. (Middle) The ISTN is trained adversarially such that the
discriminator D becomes better at identifying real (S and T') and transformed (S27)
images. The ISTN simultaneously produces better transformations S2T of S that look
more like the images T'. The training process can also be done bidirectionally (right).

Our results demonstrate the successful recovery of performance on classification
and regression tasks when using ISTNs to tackle domain shift. We explore both
unidirectional and bidirectional training schemes and compare retraining the
task model from scratch versus finetuning. We present proof-of-concept results
on synthetic images generated with Morpho-MNIST [15] for a 3-class classi-
fication task. Our method is then validated on real multi-site data with 3D
T1-weighted brain MRI. Our results indicate that ISTNs improve generalization
and predictive performance can be recovered close to single-site accuracy.

2 Method

We propose adversarial training of ISTNs to perform model-agnostic DA via ex-
plicit appearance and shape transformations between the domains. We explore
unidirectional and bidirectional training schemes as illustrated in Figure 1.

Models. ISTNs have two components: an image transformer network (ITN)
and a spatial transformer network (STN) [16,14]. Here, we additionally require
a discriminator model for adversarial training of the ISTN.

ITN: The ITN performs appearance transformations such as contrast and
brightness changes, and other localised adaptations at the image-level. A com-
mon image-to-image (I2I) translation network based on UNet with residual skip
connections can be employed. We use upsample-convolutions to reduce chequer-
board artifacts compared with transposed convolution. We use batch normaliza-
tion, dropout layers and ReLU activations with a final tanh activation for the
output. All input images are pre-normalized to the [—1,1] intensity range.
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STN: We experiment with both the affine and B-spline STNs described in the
original ISTN paper. Affine STNs learn to regress the parameters of linear spa-
tial transforms with translation, rotation, scaling, and shearing. B-spline STNs
regress control point displacements. Linear interpolation is used throughout.
Note that in this work, Affine and B-Spline STNs are considered independently
and are not composed.

Discriminator: In both Morpho-MNIST and brain MRI experiments, we use a
standard fully-convolutional classification network with instance normalization,
dropout layers and a sigmoid output.

Task models: The employed classifiers and regressors follow the same fully-
convolutional structure as the discriminator, reducing the dimensions of the
input images to a multi-class or continuous value prediction, depending on the
task. We use cross-entropy or mean-squared error loss functions, respectively.

Appendices C and D provide details about the architectures of different net-
works. All implementations are in PyTorch [17] with code available online.!.

Training. The output from the ITN is directly fed into the STN. They are
then composed into a single ISTN unit, and are trained jointly end-to-end. Dis-
criminator: The images S (from the source domain) are passed through the
ISTN to generate images S2T, where T indicates images from the target do-
main. Next, the S2T are passed through the discriminator Dr to yield a score
in the range (0,1) denoting whether the image is a real sample from domain
T or a transformed one. The discriminator is trained by minimizing the binary
cross-entropy loss Lpee between the predicted and true domain labels. Eq. (1)
shows the total discriminator loss. Soft labels for the true domain are used to
stabilize early training of the discriminator. We replace the hard ‘0" and ‘1’ do-
main labels by random uniform values in the ranges [0.00,0.03] and [0.97,1.00],
respectively.

ISTN: The ISTN is trained as a generator. The ISTN output S27 is passed
through the discriminator and forced to be closer to domain T' by computing
the adversarial loss Lagy = Lpee (D7 (52T, 1). Soft labels are also used here. We
expect that when images T are passed through the ISTN, the output 727 should
be unchanged as it is already in domain 7. This is enforced by the identity loss
Lige = £1(T,T2T) acting on image intensities of 7" and T2T'. A weighting factor
A is applied to L;4 giving the total loss function for the ISTN in Eq. (3)c.

We compare with the CycleGAN [18] training approach, which trains both
directions simultaneously using two ISTNs (ISTNgor and ISTNpog) and two
discriminators (Dg and Dr). The CycleGAN introduces the cycle-consistency
term to L;s, such that when ISTN79g is used to transform S27T, the result
S52T2S is forced to be close to S. Figure 1 shows the two ISTNs, their outputs
and associated losses. The loss functions for ISTNgar are shown in Eq. (3).
Optimization is done using the Adam optimizer.

Downstream Tasks: The goal of our work is to demonstrate that such explicit
appearance and spatial transformations via ISTNs can successfully tackle DS in

! https://github.com/mlnotebook/domain_adapation_istn
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A: Thin B: Thick C Slanted-thin D: Slanted-thick

Fig.2: (Top) Examples from Morpho-MNIST datasets from domains (left-to-
right) A thin un-slanted digits; B thickened digits; C slanted digits; D thickened
and slanted digits. Each contains ‘healthy’, ‘fractured’ and ‘swollen’ classes.
(Bottom) Examples of source domain images before (left) and after (right) ISTN-
transformation showing ISTN recovery of appearance and shape changes.

certain applications. Ideally, we would like to observe that the performance of a
predictor trained on S27T and tested on T can recover to single-site performance.
To demonstrate this, prior to training the ISTN, we train a task model (e.g. clas-
sifier or regressor) Tg on domain S. The performance of Tg(.9) is likely to be our
‘best performance’ whilst Tg(7T) will degrade due to DS. During ISTN training,
we simultaneously re-train 7g on the ISTN output of S27. This model Tgor is
trained to achieve maximum performance on the transformed images 727 (S27T)
using labels from S. We assess the performance ‘recovery’ of Tgor by comparing
Ts(T) with Tser (T'). In practice, data from T would be unlabelled. Our approach
ensures that test data from the new domain 7 is not modified in any way. Addi-
tionally, in scenarios where the original model Tg is deployed, it is likely to have
been trained on a large, well-curated, high-quality dataset; we cannot assume
similar would be available for each new test domain. Our model-agnostic unsu-
pervised DA is validated on two problems: i) proof-of-concept showing recovery
of a classifier’s performance on digit recognition, ii) classification and regression
tasks with real-world, multi-site T1-weighted brain MRI.

£disT = % [‘Cbce(DT(S2T)a 0) + Ebce(DT(T>7 1)] . (1)
L350 = Loce(Dr(527),1) + A | T2T = T, - (2)
L33 = Luce(Ds(T25),0) + $A[|S2S — S|, + A[|S2725 = S|, (3)

3 Materials

3.1 Proof-of-concept: Morpho-MNIST Experiments

Data. Morpho-MNIST is a framework that enables applying medically-inspired
perturbations, such as local swellings and fractures, to the well-known MNIST
dataset [15]. The framework also allows us to control transformations to obtain
thickening and shearing of the original digits. We first create a dataset with
three classes: ‘healthy’ digits with no transformations; ‘fractured’ digits with a
single thin disruption and ‘swollen’ digits which exhibit a localized, tumor-like
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abnormal growth. A digit is only either fractured or swollen, not both. We spec-
ify a set of ‘thin’ digits (2.5 pixels across) to be source domain A. To simulate
domain shift, we create three more datasets—domain B: thickened, 5.0 pixels
digits; domain C': slanted digits created by shearing the image by 20-25° and
domain D: thickened-slanted digits at 5.0 pixels and 20-25° shearing. Datasets
B-D contain the same three classes as A, while each set has its own data charac-
teristics simulating different types of domain shift. All images are single-channel
and 28 x 28 pixels. Figure 2 shows some visual examples.

Task. The downstream task in this experiment is a 3-class classification prob-
lem: ‘healthy’ vs. ‘fractured’ vs. ‘swollen’. We train a small, fully-convolutional
classifier to perform the classification on domain A. We use ISTNs to retrain
the classifier on transformed images A2B, A2C, and A2D, and evaluate each on
their corresponding test domains B, C, and D.

We run training for 100 epochs and perform grid search to find suitable hyper-
parameters including learning rate, trade-off A and the control-point spacing
of the B-spline STN. We conduct experiments using ITN only, STN only and
combinations of affine and B-spline ISTNs to determine the best model for the
task. We also consider both transfer directions, switching the roles of source and
target domains.

3.2 Application to Brain MRI Experiments

We apply the same methodology to a real-world domain shift problem where we
observe a significant drop in prediction accuracy when naively training on one
site and testing on another without any DA. We utilise 3D brain MRI from two
sites that employ similar but not identical imaging protocols.

Data. We construct two datasets of T1-weighted brain MRI from subjects with
no reported pathology, where n = 565 are taken from the Cambridge Centre
for Ageing and Neuroscience study (Cam-CAN) [19,20] and n = 689 from the
UK Biobank imaging study (UKBB) [21,22,23]. From each site, 450 subjects
are used for training and the remainder for testing. The UKBB dataset con-
tains equal numbers of male and female subjects between the ages of 48 and 71
(= 59.5). In the classification task, to simulate the effect of population shift our
Cam-CAN dataset has a wider age range (30-87, 1 = 57.9) but maintains the
male-to-female ratio. We match the age range of both datasets in the regression
task, limiting DS only to the more subtle scanner effects. UKBB images were
acquired at the UKBB imaging centre, and Cam-CAN images were acquired at
the Medical Research Council Cognition and Brain Sciences Unit in Cambridge,
UK. Both sites acquire 1 mm isotropic images using the 3D MPRAGE pulse
sequence on Siemens 3T scanners with a 32-channel receiver head coil and in-
plane acceleration factor 2. Appendix A presents the acquisition parameters that
differ between the two sites. We note that generally the acquisition parameters
of both sites are similar, and the images cannot be easily distinguished visually.
For pre-processing, all images are affinely aligned to MNI space, skull-stripped,
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Table 1: 3-class classification results on MorphoMNIST. Images transferred from
classifier domain A: ‘thin unslanted’ to three target domains. Accuracies shown
for classifiers retrained on the ISTN output from scratch (Accs) and finetuned
(Acce). A is model improvement from baseline. Control-point spacings indicated
for B-Spline STNs. First row is the original classifier without DA.

Target Thick Unslanted Thin Slanted Thick Slanted
ITN STN Accs A Accs A |Accs A Accg A |Accs A Accs A
no no 41.2 45.7 32.8
yes no 79.0 37.8 83.3 42.1|83.4 37.7 83.3 37.6(82.4 49.6 84.6 51.8
no Affine 52.4 11.2 68.9 27.7/92.4 46.7 93.0 47.3|54.8 22.0 64.8 32.0
no |B-spline (4)[39.0 -2.2 54.4 13.2|/92.1 46.4 93.1 47.4|36.0 3.2 57.2 24.4
no |B-spline (8)[49.2 8.0 61.5 20.3|92.5 46.8 92.3 46.6|37.0 4.2 61.8 29.0
yes Affine 78.8 37.6 77.1 35.9|86.7 41.0 88.4 42.7|81.9 49.1 83.1 50.3
yes |B-spline (4)|66.3 25.1 75.8 34.6/92.7 47.0 91.0 45.3|79.3 46.5 82.7 49.9
yes |B-spline (8)[69.5 28.3 77.2 36.0/91.8 46.1 93.4 47.7|79.0 46.2 80.8 48.0
Table 2: Sex classification results on 3D Brain MRI
Source UKBB Cam-CAN
Method Uni-ISTN CycleGAN Bi-ISTN Uni-ISTN CycleGAN Bi-ISTN
ITN STN Accs A Accg A |Accs A Accg A |[Accs A Accg A |Accs A Aces A
no no 54.8 54.8 64.3 64.3
yes no 79.1 24.3 72.2 17.4|80.0 25.2 80.8 26.0(86.2 21.9 78.2 13.9/80.8 16.5 79.9 15.6
yes Affine 80.9 26.1 75.7 20.9|70.4 15.6 82.4 27.6(/79.9 15.6 79.1 14.8(82.4 18.1 72.0 7.7
yes | B-spline (8) [78.3 23.5 76.5 21.7|79.1 24.3 78.7 23.9|80.3 16.0 84.5 20.2|78.7 14.4 80.8 16.5
yes |B-spline (16)|80.0 25.2 78.3 23.5|73.0 18.2 67.8 13.0/85.4 21.1 84.1 19.8|67.8 3.5 68.6 4.3

bias-field-corrected, and intensity-normalised to zero mean unit variance within
a brain mask. Voxels outside the mask are set to 0. Images are passed through
a tanh function before being consumed by the networks.

Task. We consider two prediction tasks, namely sex classification and age re-
gression using the UKBB and Cam-CAN sets, each once as source and once
as target domain. The task networks are retrained on the transformed images
produced by the ISTN and evaluated on the corresponding target domain.

4 Experimental Results

Morpho-MNIST. Quantitative results for the synthetic experiments are sum-
marized in Table 1. ITNs are able to harmonize local appearance such as thick-
ness between source and target domains, while STNs perform well in recovering
shape variations such as slant. Where both thickness and slant are varied be-
tween source and target domains, we note an ITN-only performs as well (or
slightly better) than a joint ISTN, suggesting that thickness is more important
for the classification task. In Fig. 2 we show visual results on how the ISTNs are
able to recover both appearance and shape differences between domains.
Brain MRI. Quantitative results are summarized in Tables 2 and 3. The sex
classifier trained and tested on UKBB achieves 84.3% accuracy. This drops to
54.8% when tested on Cam-CAN. Similarly, training and testing on Cam-CAN
yields 91.6%, dropping to 64.3% when testing on UKBB. Using ISTNs for domain
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Table 3: Age regression results on 3D Brain ~ Fig.3: Examples of (left-to-right)
MRI. MAEg is the task model retrained source domain, transformed ISTN out-

from scratch. put and difference image.
Source UKBB Cam-CAN Source: UKBB Target: Cam-CAN
Method Uni-ISTN | Uni-ISTN i
ITN STN MAE; A |MAE;, A
no no 5.13 461
yes no 471 0.42| 4.57 0.04

yes Affine 4.58 0.55| 5.00 -0.39
yes |B-spline (16)| 5.06 0.07| 4.90 -0.29

»

adaptation, and retraining the classifiers increases the accuracy substantially on
Cam-CAN from 54.8% to 80.9%, and on UKBB from 64.3% to 86.2%, which is
close to the single-site performance. Training the classifier from scratch performs
similarly well to fine-tuning. Bidirectional training with CycleGAN seems not to
provide substantial improvements over the simpler unidirectional scheme. The
ISTNs are able to overcome some of the acquisition and population shifts between
the two domains. The age regressor trained and tested on UKBB achieves mean
absolute error (MAE) of 4.25 years increasing to 5.13 when evaluated on Cam-
CAN. The regressor trained and tested on Cam-CAN yields 4.10 years MAE
increasing to 4.61 when tested on UKBB. Despite the initially smaller drop in
performance for age regression, ISTNs still improve performance. The UKBB-
trained regressor recovers to 4.58 years MAE and the Cam-CAN-trained one to
4.56 years. Note, we had limited the population shift here by constraining the
age range, thus the recovery is likely due to a reduction in acquisition shift.

5 Conclusion

We explored adversarially-trained ISTNs for model-agnostic domain adaptation.
The learned image-level transformations help explainability, as the resulting im-
ages can be visually inspected and checked for plausibility (cf. Fig. 3). Further
interrogation of deformations fields also adds to explainability, e.g. Appendix B.
Image-level DA seems suitable in cases of subtle domain shift caused by acquisi-
tion and population differences in multi-center studies. Predictive performance
approached single-site accuracies. The choice of STN and control-point spacings
may need to be carefully considered for specific use cases. An extension of our
work to many-sites may be possible by simultaneously adapting to multiple sites.
A quantitative comparison to feature-level DA would be a natural next step for
future work. Another interesting direction could be to integrate the ISTN com-
ponent in a fully end-to-end task-driven optimisation, where the ISTN and the
task network are trained jointly.
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Supplementary Material

A Acquisition Parameters.

Table 4: Acquisition parameters for the multi-site brain MRI datasets.

Site Scanner TR (ms) TE (ms) Tl (ms) TA (s) FOV (mm)
Cam-CAN Siemens TIM Trio 2250 2.99 900 272 256x240x192
UKBB Siemens Skyra 2000 2.01 880 294 208x256x256
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B ISTN Transformation Visualization.

After ITN After STN Deformation Field

Affine ISTN

B-Spline ISTN

Fig.4: The original image (left) passes through the ISTN. The transformations
applied by the ITN and subsequently by the STN are visualized by showing
difference images. The transformation applied by the STN can also be visualized
as a spatial deformation field (right). This is shown for the Affine (top) and B-
Spline (bottom) STNs.
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C Morpho-MNIST Architectures.

Table 5: ITN (left) and discriminator (right) architectures for Morpho-MNIST exper-
iments. n f: number of channels, k: square kernel size, s: stride, in and out: layer input
and output dimensions, N: normalization (BN: batch normalization, IN: instance nor-
malization), D: Dropout keep-rate, A: activation function. ‘up’ is composed of bilinear
upsampling followed by zero-padding of 1 and convolution shown in the table.

ITN Architecture - Morpho-MNIST

layer nf k s p in out N D A
in - - - - [1,28,28] - - -
conv. 16 3 1 1 [1,28,28] [16,28,28] BN - RelLU
conv 32 3 2 1 [16,28,28] [32,14,14] BN - RelU
conv 64 3 2 1 [32,14,14] [64,7,7] BN - RelLU
conv 128 3 1 1 [64,7,7] [128,7,7] BN - ReLU
conv 64 3 1 1 [128,7,7] [64,7,7] BN - RelLU
up 32 3 1 1 [64,7,7] [32,14,14] BN - ReLU
up 16 3 1 1 [32,14,14] 16,28,28] BN - RelLU
up 1 3 1 1 [16,28,28] 1,28,28] - - tanh
out - - - - 1,28,28] - - -

Discriminator Architecture - Morpho-MNIST

layer nf k s p in out N D A
in - - - - [1,28,28 - - -
conv. 32 3 1 1 [1,28,28 [32,28,28] - - ReLU
conv 64 3 2 1 [32,28,28] [64,14,14] IN - RelLU
conv 128 3 2 1 [64,14,14] [1287,7] IN - RelU
conv 256 3 2 1 [128,7,7] 256,4,4] IN 0.5 RelLU
conv 1 3 2 1 [256,4,4] 1,1,1] - - sigmoid
out - - - - 1,1.1] - - -
3-Class Classifier Architecture - Morpho-MNIST
layer nf k s p in out N D A
in - - - - [1,64,64,64] - - -
conv 16 3 1 1 [1,2424] [162424] - - RelU
conv 32 3 2 1 [16,14,14] [327,7] BN - RelLU
conv 64 3 2 1 [32,7,7] [64,4,4] BN - ReLU
conv 128 3 2 1 [64,4/4] 128,1,1] BN 0.5 RelLU
conv. 3 3 2 0 [128,1,1] 3,1,1] - - sigmoid
out - - - - 3,1,1] - - -
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D Brain MRI Architectures.

Table 6: Architectures for Brain MRI experiments. nf: number of channels, k: square
kernel size, s: stride, in and out: layer input and output dimensions, N: normaliza-
tion (BN: batch or IN: instance normalization), D: Dropout keep-rate, A: activation

function. ‘up’ is composed of linear upsampling, zero-padding and convolution.
ITN Architecture - Brain MRI

layer nf k s p in out N D A
in - - - - [1,64,64,64 - - -
conv 8 3 1 1 [1,64,64,64 [8,64,64,64] BN - RelLU
conv 16 3 2 1 [8,64,64,64 [16,32,32,32] BN - RelLU
conv 32 3 2 1 [16,32,32,32] [32,16,16,16] BN - RelLU
conv 64 3 2 1 [32,16,16,16] [64,8,8,8] BN - RelLU
conv 64 3 1 1 [648,8,8] [64,8,8,8] BN - RelLU
conv 64 3 1 1 [64,8,8,8] [64,8,8,8] BN - RelLU
up 32 3 1 1 [64,8,8,8] [32,16,16,16] BN 0.5 RelLU
up 16 3 1 1 [32,16,16,16] [16,32,32,32] BN 0.5 RelLU
up 8 3 1 1 [16,32,32,32] 8,64,64,64 BN 0.5 RelLU
up 1 3 1 1 [8,64,64,64] 1,64,64,64 - - tanh
out - - - - 1,64,64,64 [
Discriminator Architecture - Brain MRI
layer nf k s p in out N D A
in - - - - [1,64,64,64] - - -
conv 32 3 1 1 [1,64,6464] [32,64,64,64] - - RelLU
conv 64 3 2 1 [32,64,64,64] [64,32,32,32] IN - ReLU
conv 128 3 2 1 [64,32,32,32] [128,16,16,16] IN - ReLU
conv 256 3 2 1 [128,16,16] [256,8,8] IN - RelLU
conv 256 3 2 1 [256,8,8] 256,4,4] IN 0.5 ReLU
conv 1 3 2 1 [256,4,4] 1,1,1] - - sigmoid
out - - - - 1,1,1] - - -
Sex Classifier Architecture - Brain MRI
layer nf k s p in out N D A
in - - - - [1,64,6464 - R -
conv 8 5 2 2 [1,64,64,64 [8,64,64,64] - - RelU
conv 16 5 2 2 [8,64,64,64 [16,32,32,32] BN - RelLU
conv 32 5 2 2 [16,32,32,32] [32,16,16,16] BN - RelLU
conv 64 5 2 2 [32,16,16] [64,8,8] BN 0.5 RelLU
conv 128 2 2 2 [64,8,8] [128,4,4] BN 0.5 RelLU
conv 128 2 2 2 [128,4,4] 128,1,1] BN 0.5 RelLU
conv 1 5 1 2 [128,1,1] 1,1,1] - - sigmoid
out - - - 1,11] - - -
Age Regressor Architecture - Brain MRI
layer nf k s p in out N D A
in - - - - [1,64,64,64] - - -
conv 16 3 1 1 [1,64,64,64] [8,64,64,64] - - RelLU
MaxPool - 2 1 [8,64,64,64] [8,32,32,32] - - -
conv 32 3 2 1 [8,32,32,32] [32,32,32,32] - - RelLU
MaxPool - 2 1 [32,32,32,32] [32,16,16,16] - - -
Linear 128 - - - [32*32*32*32,1] [128] - - RelLU
Linear 64 - - - [128] [64] - - ReLU
Linear 32 - - - [64] [32] - - RelLU
Linear 1 - - - [37] [1] - -

out - - - - [1] - - -
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